Search results for " Fibration"

showing 10 items of 16 documents

New fourfolds from F-theory

2015

In this paper, we apply Borcea-Voisin's construction and give new examples of fourfolds containing a del Pezzo surface of degree six, which admit an elliptic fibration on a smooth threefold. Some of these fourfolds are Calabi-Yau varieties, which are relevant for the $N=1$ compactification of Type IIB string theory known as $F$-Theory. As a by-product, we provide a new example of a Calabi--Yau threefold with Hodge numbers $h^{1,1}=h^{2,1}=10$.

14J50F-theory14J32del Pezzo surface14J32; 14J35; 14J50; Calabi-Yau manifolds; Del Pezzo surfaces; Elliptic fibration; F-theory; Mathematics (all)Calabi-Yau manifoldMathematics - Algebraic GeometryCalabi-Yau manifoldsFOS: MathematicsMathematics (all)14J35Settore MAT/03 - Geometriaelliptic fibrationDel Pezzo surfaces14J32 14J35 14J50Algebraic Geometry (math.AG)
researchProduct

QUANTIZATION OPERATORS ON QUADRICS

2008

AlgebraGeometric quantizationGeneral MathematicsComplex projective spaceQuantization (signal processing)Geodesic flowHopf fibrationMathematicsKyushu Journal of Mathematics
researchProduct

On hyperbolic type involutions

2001

We give a bound on the number of hyperbolic knots which are double covered by a fixed (non hyperbolic) manifold in terms of the number of tori and of the invariants of the Seifert fibred pieces of its Jaco-Shalen-Johannson decomposition. We also investigate the problem of finding the non hyperbolic knots with the same double cover of a hyperbolic one and give several examples to illustrate the results.

Bonahon-Siebenmann decomposition[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Seifert fibrationsMathematics::Dynamical Systemscyclic branched coversMathematics::Geometric Topology57M5057M6057M12[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]57M25orbifoldshyperbolic knots[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]
researchProduct

Discrete and Conservative Factorizations in Fib(B)

2021

AbstractWe focus on the transfer of some known orthogonal factorization systems from$$\mathsf {Cat}$$Catto the 2-category$${\mathsf {Fib}}(B)$$Fib(B)of fibrations over a fixed base categoryB: the internal version of thecomprehensive factorization, and the factorization systems given by (sequence of coidentifiers, discrete morphism) and (sequence of coinverters, conservative morphism) respectively. For the class of fibrewise opfibrations in$${\mathsf {Fib}}(B)$$Fib(B), the construction of the latter two simplify to a single coidentifier (respectively coinverter) followed by an internal discrete opfibration (resp. fibrewise opfibration in groupoids). We show how these results follow from thei…

Coidentifier; Coinverter; Factorization system; Internal fibrationPhysicsSequenceAlgebra and Number TheoryOrthogonal factorizationGeneral Computer ScienceInternal versionFactorization systemTheoretical Computer ScienceCombinatoricsSettore MAT/02 - AlgebraCoinverterTransfer (group theory)MorphismFactorizationInternal fibrationCoidentifierFixed baseApplied Categorical Structures
researchProduct

Harmonicity and minimality of oriented distributions

2004

We consider an oriented distribution as a section of the corresponding Grassmann bundle and, by computing the tension of this map for conveniently chosen metrics, we obtain the conditions which the distribution must satisfy in order to be critical for the functionals related to the volume or the energy of the map. We show that the three-dimensional distribution ofS4m+3 tangent to the quaternionic Hopf fibration defines a harmonic map and a minimal immersion and we extend these results to more general situations coming from 3-Sasakian and quaternionic geometry.

General MathematicsBundleMathematical analysisImmersion (mathematics)Pushforward (differential)Harmonic mapTangentMathematics::Differential GeometryHopf fibrationExponential map (Riemannian geometry)MathematicsIsrael Journal of Mathematics
researchProduct

Algebraic models of the Euclidean plane

2018

We introduce a new invariant, the real (logarithmic)-Kodaira dimension, that allows to distinguish smooth real algebraic surfaces up to birational diffeomorphism. As an application, we construct infinite families of smooth rational real algebraic surfaces with trivial homology groups, whose real loci are diffeomorphic to $\mathbb{R}^2$, but which are pairwise not birationally diffeomorphic. There are thus infinitely many non-trivial models of the euclidean plane, contrary to the compact case.

Mathematics - Differential GeometryPure mathematicsaffine complexificationLogarithmReal algebraic model01 natural sciencesMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesEuclidean geometryAlgebraic surfaceaffine surfaceFOS: Mathematics0101 mathematicsInvariant (mathematics)Algebraic numberMathematics::Symplectic GeometryAlgebraic Geometry (math.AG)MathematicsAlgebra and Number Theory010102 general mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]q-homology planesbirational diffeomorphismDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]rational fibrationPairwise comparison010307 mathematical physicsGeometry and TopologyDiffeomorphism[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]14R05 14R25 14E05 14P25 14J26[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG]Singular homology
researchProduct

Affine Surfaces With a Huge Group of Automorphisms

2013

We describe a family of rational affine surfaces S with huge groups of automorphisms in the following sense: the normal subgroup Aut(S)alg of Aut(S) generated by all algebraic subgroups of Aut(S) is not generated by any countable family of such subgroups, and the quotient Aut(S)/Aut(S)alg cointains a free group over an uncountable set of generators.

Normal subgrouprational fibrationsautomorphismsGroup (mathematics)General Mathematics010102 general mathematicsAutomorphism01 natural sciences[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]CombinatoricsMathematics::LogicMathematics - Algebraic GeometryMathematics::Group Theory0103 physical sciencesFree groupCountable setUncountable set[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]010307 mathematical physics0101 mathematicsAlgebraic number14R25 14R20 14R05 14E05affine surfacesQuotientMathematicsInternational Mathematics Research Notices
researchProduct

The snail lemma for internal groupoids

2019

Abstract We establish a generalized form both of the Gabriel-Zisman exact sequence associated with a pointed functor between pointed groupoids, and of the Brown exact sequence associated with a fibration of pointed groupoids. Our generalization consists in replacing pointed groupoids with groupoids internal to a pointed regular category with reflexive coequalizers.

Pure mathematicsExact sequenceLemma (mathematics)Internal groupoid Snail lemma Fibration Snake lemmaAlgebra and Number TheoryFunctorMathematics::Operator Algebras010102 general mathematicsFibrationMathematics - Category Theory01 natural sciences18B40 18D35 18G50Settore MAT/02 - AlgebraMathematics::K-Theory and HomologyMathematics::Category Theory0103 physical sciencesFOS: MathematicsCategory Theory (math.CT)Regular category010307 mathematical physics0101 mathematicsMathematics::Symplectic GeometryMathematics
researchProduct

Fibred-categorical obstruction theory

2022

Abstract We set up a fibred categorical theory of obstruction and classification of morphisms that specialises to the one of monoidal functors between categorical groups and also to the Schreier-Mac Lane theory of group extensions. Further applications are provided to crossed extensions and crossed bimodule butterflies, with in particular a classification of non-abelian extensions of unital associative algebras in terms of Hochschild cohomology.

Pure mathematicsFibrationCohomology Fibration Category of fractions Schreier-Mac Lane theorem Obstruction theory Crossed extension Hochschild cohomologyFibered knotMathematics::Algebraic TopologyCohomologyHochschild cohomologyMorphismMathematics::K-Theory and HomologyMathematics::Category TheoryCategorical variableMathematicsSchreier-Mac Lane theoremAlgebra and Number TheoryFunctorCategory of fractionsGroup (mathematics)Crossed extensionSettore MAT/01 - Logica MatematicaObstruction theoryCohomologyCategory of fractions; Cohomology; Crossed extension; Fibration; Hochschild cohomology; Obstruction theory; Schreier-Mac Lane theoremSettore MAT/02 - AlgebraBimoduleObstruction theory
researchProduct

Del Pezzo elliptic varieties of degree d <= 4

2019

Let Y be a smooth del Pezzo variety of dimension n&gt;=3, i.e. a smooth complex projective variety endowed with an ample divisor H such that K_Y = (n+1)H. Let d be the degree H^n of Y and assume that d &gt;= 4. Consider a linear subsystem of |H| whose base locus is zero-dimensional of length d. The subsystem defines a rational map onto P^{n-1} and, under some mild extra hypothesis, the general pseudofibers are elliptic curves. We study the elliptic fibration X -&gt; P^{n-1} obtained by resolving the indeterminacy and call the variety X a del Pezzo elliptic variety. Extending the results of [7] we mainly prove that the Mordell-Weil group of the fibration is finite if and only if the Cox ring…

Pure mathematicsMathematics (miscellaneous)Elliptic fibrationSettore MAT/03 - GeometriaCox ringsDel Pezzo varietyTheoretical Computer ScienceDegree (temperature)Mathematics
researchProduct